Existence, Multiplicity, and Bifurcation in Systems of Ordinary Differential Equations
نویسنده
چکیده
We prove new non-resonance conditions for boundary value problems for two dimensional systems of ordinary differential equations. We apply these results to the existence of solutions to nonlinear problems. We then study global bifurcation for such systems of ordinary differential equations Rotation numbers are associated with solutions and are shown to be invariant along bifurcating continua. This invariance is then used to analyze the global structure of the bifurcating continua, and to demonstrate the existence of multiple solutions to some boundary value problems.
منابع مشابه
Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملSpecial Session 67: Topological Methods for the Qualitative Analysis of Differential Equations and Inclusions
The main topic of the session will be topological methods such as degree theory, fixed point index theory, Morse theory, Maslov index, spectral flow, and their applications to various problems in ordinary, functional and partial differential equations, differential-algebraic equations and differential inclusions. Particular emphasis will be given to existence, multiplicity and bifurcation of so...
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملDynamics of Multisection Semiconductor Lasers
We investigate the longitudinal dynamics of multisection semiconductor lasers based on a model, where a hyperbolic system of partial differential equations is nonlinearly coupled with a system of ordinary differential equations. We present analytic results for that system: global existence and uniqueness of the initial-boundary value problem, and existence of attracting invariant manifolds of l...
متن کاملBIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF
In this paper, first we discuss a local stability analysis of model was introduced by P. J. Mumby et. al. (2007), with $frac{gM^{2}}{M+T}$ as the functional response term. We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef. Next, we consider this model under the influence of the time delay as the bifurcat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007